

 Navigation

 	
 index

 	
 next |

 	Signalbox 2 documentation

SignalBox

	Installation

	SignalBox’s Roles and Responsibilities

	Setting up studies

	Creating questionnaires

	Recruiting participants and study memberships

	Collecting data from participants

	Managing data and Exporting Data

	Resources for trial administrators

	Reference for database/application structures

	Glossary

Overview

SignalBox is a web application application designed to make it easy to run clinical and other studies. Signalbox makes it easy to recruit, take consent from, and follow-up large numbers of participants, using a customisable assessment schedule.

Participants can provide self-report data via email, telephone, or SMS message. Study coordinators can login to a secure administration website to manage studies and check participation. The admin interface integrates online and offline elements of a study; researchers can enter addtional datapoints collected offline or in the lab, and there is full support for double entry and reconciling of paper-based data, and also for audit trails of changes to participant data.

Signalbox was designed to replace the numerous, ad-hoc systems which have been developed by research groups, providing a flexible, secure, and well-tested system. The software has been independently audited, and used in many numerous studies, including a large, MRC-funded clinical trial (http://www.reframed.org.uk).

Functional anatomy

Below is a description of the data model used by the system. In essence, all capitalised words are tables in the database; the text below helps describe their structural and functional interrelations.

Core components

A Study is lined to a number of StudyConditions which can each use a number of Scripts. A Script links to an Asker (a questionnaire) which includes a number of Pages that contain Questions. Questions can use a ChoiceSet which represents a set of Choices which define the range of allowed Answers (e.g. as part of a Likert type scale). Alternatively, Scripts may define an external url at which participants will enter data (e.g. a bespoke experimental task, or via a third party service like SurveyMonkey).

When a User joins a Study then a Membership is created, which stores the randomisation times etc. When a Membership is randomised to a StudyCondition then the Script is used to create Observations (scripts use a special syntax to describe the offset at which each Observation will be created, by default counting from when the user is randomised).

When Observations are due then they are executed by a background task, causing an email, SMS to be sent, or a phone call to be made. In responding, users create a Reply to the Observation: A Reply consists of multiple Answers, which represent responses to individual questions. Because a Reply might be interrupted or left incomplete, multiple replies can be made to each Observation (which the administrator needs to remember when the data are exported; they can chose a particular Reply to use by marking it as canonical).

The diagram below represents the core constructs within Signalbox (but is not complete... see below).

[image: _images/studystructure.pdf]

Questionnaires and collecting data

As noted above, Askers contain Pages which in turn contain Questions. Some questions may also refer to Instruments, which represent a bundle of Questions which are commonly shown together (e.g. a psychometric scale). When a questionnaire is displayed, ‘instrument’ questions automatically include this group of questions on a single page. See the diagram below:

[image: _images/questionnairestructure.pdf]

Additional components which may not always be used

Script``s generate Observations, but can also generate Reminders for those Observations, and these send an additional messages to users at intervals after the Observation falls due.

Scripts can also have ScoreSheets attached to them, which are sets of rules which describe how a set of Answers in response to the Script’s Asker can be reduced to a single number (e.g. the mean or total for a set of Questions). ScoreSheets create scores which can be viewed for a particular User (e.g. to check whether a user meets a criteria for study entry from a screening questionnaire). ShowIfs are rules which evaluate to a boolean (yes/no) based on Replies Users have previously made (or Replies that are in progress). ShowIfs can be used to determine whether a particular Question should be shown based on previous responses. They can also be used to create new Observations based on a Reply, using an ObservationCreator. For example, if a User completes a depression questionnaire (Asker) and a ScoreSheet computes they have scored above a certain threshold, then an additional Observation could be created and a followup email sent.

Users are linked to a UserProfile which can contain additional fields like a telephone number, address etc. A Study can specify the subset of these fields which are required when a user signs up. ContactRecords are made when the administration interface is used to send a User a message. In some studies, its necessary to collect data from some Users (e.g. therapists) about other Users (e.g. clients); where this is the case a Membership can store an additional field indicating which User the data is about, as well as who it has been collected from

StudySites represent different locations in a multi-site trial, can can be used to filter Memberships when viewing date.

Database schema

In addition to the simplified diagrams above, the database schema for the Signalbox and Ask apps may also help clarify the structure of the application:

Download Signalbox app schema .pdf

[image: _images/signalboxgraph.pdf]
Download Ask app schema .pdf

[image: _images/askgraph.pdf]

Note

Required fields in the database are displayed in bold

Technical overview

Signalbox is based on a number of excellent open source software projects. It was written using the Django web framework (i.e. in Python), and uses either an sqlite or a postgresql database (postgresql is strongly recommended). Configuration is provided to quickly host an instance using Heroku (a cloud-based application host, see http://en.wikipedia.org/wiki/Heroku), although self hosting is also possible.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Installation

To run Signalbox you will need some kind of Unix with python 2.7 available. Ubuntu 12.04 LTS is currently recommended, but OS X is fine too for development.

To get up and running quickly, the easiest way is currently to use Heroku_ . Heroku have a free plan which is capable enough for even quite large studies, although self-hosting is also straightforward.

Prerequisites

For hosted installations, you just need python, and pip.

For local development, on Ubuntu 12.04, you can install everything you need for a development machine like this:

sudo apt-get install -y python-dev postgresql-server-dev-9.1 libjpeg-dev virtualenvwrapper libmagic-dev git mercurial zlib1g-dev libfreetype6 libfreetype6-dev
export WORKON_HOME=~/Envs
mkdir -p $WORKON_HOME
source /usr/local/bin/virtualenvwrapper.sh

Hosted installation on Heroku

To get Signalbox running on Heroku’s free plan (which is ideal for normal sized studies), you first need to:

	Sign up for an account with Heroku (https://devcenter.heroku.com/articles/quickstart) and install their command line tool. You should upload your keys to the server to avoid having to repeatedly type your password:

heroku keys:add

	Optionally, if you want to upload images or other media for studies or questionnaires, sign up with Amazon for an S3 storage account (uploaded image files cannot be kept on heroku; see http://aws.amazon.com).

	Optionally, if you plan to send email, obtain the details (host, username, password) for an SMTP email server you will use. Amazon’s ‘simple email service’, SES, is good: http://aws.amazon.com/ses/

	Optionally, if you plan on using interactive telephone calls or SMS, sign up with Twilio and make a note of your secret ID and key: https://www.twilio.com.

Installation

Install the heroku command line program and authenticate:

wget -qO- https://toolbelt.heroku.com/install-ubuntu.sh | sh
ssh-keygen
heroku keys:add

Clone the example project:

git clone GITHUBREPO newname
cd newname
pip install -r requirements.txt

The run the install script:

heroku_install_signalbox

At this point, your installation should be up and running on heroku:

heroku open

But you need to create the first user to login to the admin site:

heroku run app/manage.py createsuperuser

Scheduled tasks

Remember to add a scheduled task to send observations via the heroku control panel. The frequency is up to you - polling more often can cost more in dyno time if it overruns the free quota (but not much), but you’ll want to add scheduled tasks for these scripts:

app/manage.py send
app/manage.py remind

If adding through cron on your own server remember to make sure the python used has signalbox in it’s path (i.e. activate the virtualenv first).

Environment variables

Note that all settings, API keys, and passwords are stored in environment variables (see http://www.12factor.net/config).

Environment variables can be se using:

heroku config:set VAR=SOMEVALUE

The key ones you will need to set are:

AWS_STORAGE_BUCKET_NAME
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY

TWILIO_ID
TWILIO_TOKEN

EMAIL_HOST
EMAIL_HOST_USER
EMAIL_HOST_PASSWORD

Others are listed below for reference.

Version control

Signalbox can use django_reversion to keep track of changes to Answer, Reply and Observation objects to provide an audit trail for a trial. It’s not enabled by default, but to turn it on you can set an environment variable:

heroku config:set USE_VERSIONING=1

Local install for development

Once you have Signalbox installed in a virtualenv and a hosted instance running, it’s easy to start hacking on it locally to update templates etc.

First make a database with postgres (for development, allow the local user all permissions).

createdb sbox

Then update the DATABASE_URL environment variable to match your new database. If everything works, open http://127.0.0.1:8000/admin to view the admin site on your development machine.

Make changes in the local repo, commit them and then:

git push heroku master

Browser compatibility

The front-end (participant facing pages) should work in almost all browsers, including IE7.

The admin interface works best in a recent webkit browser (Safari or Chrome) but will largely function in IE7 (although the menus are slightly broken, they are usable). Everything will work properly in IE8 onwards.

Note

It’s recommended to use Chrome-Frame if IE7 is the only available browser. See: https://developers.google.com/chrome/chrome-frame/

Warning

Check everything works in your target browsers early in the trial setup. The health services and large firms have some weird and wonderful stuff deployed.

Custom domain names

You can add your own domain name to the app, but you will need to update the ALLOWED_HOSTS environment variable. See https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts and https://devcenter.heroku.com/articles/config-vars.

Reference for all user-configurable environment variables

Each of these is loaded from an environment variable by signalbox.configurable_settings.py, and some are documented there:

DB_URL default: postgres://localhost/sbox

LOGIN_FROM_OBSERVATION_TOKEN
SHOW_USER_CURRENT_STUDIES
DEFAULT_USER_PROFILE_FIELDS

DEBUG

AWS_STORAGE_BUCKET_NAME
COMPRESS_ENABLED
AWS_QUERYSTRING_AUTH

SECRET_KEY
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
TWILIO_ID
TWILIO_TOKEN

ALLOWED_HOSTS
SESSION_COOKIE_HTTPONLY
SECURE_BROWSER_XSS_FILTER
SECURE_CONTENT_TYPE_NOSNIFF
SECURE_SSL_REDIRECT
SESSION_COOKIE_AGE
SESSION_SAVE_EVERY_REQUEST
SESSION_EXPIRE_AT_BROWSER_CLOSE

SESSION_COOKIE_SECURE=False

USE_VERSIONING=False

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

SignalBox’s Roles and Responsibilities

Role and Permissions

Signalbox defines 4 roles, each of which have set of permissions.

	Researchers

	Research assistants

	Assessors

	Clinicians

In addition, the documentation refers to:

	Participants/Patients

However participants are not a distinct group within the system - a participant just needs to be a registered User of the site. Note researchers, clinicians etc. may also be participants. Also see Membership types .

Note

All users of the system are stored as django django.auth.User objects. We use the standard django authentication mechnisms to log people in and track session state (this uses a cookie for identification, but all the data gets stored in the DB). SignalBox roles are defined using Django’s Group models (see https://docs.djangoproject.com/en/1.3/topics/auth/ for more details.)

Note

for many studies, the only types of users which will be required are Researchers and Participants.

Role based permissions

Permissions for many views within the site are determined by group memberships.

Researchers

Researchers have pretty much full access to data and functionality within the site. They don’t need to be a superuser within the django auth system though. Examples of things only researchers need to be able to do are resolving duplicate replies for observations (i.e. picking a canonical reply, see Collecting data from participants), and exporting data (exporting_data).

Research assistants

For large trials, Research Assistant’s help administer participants and memberships, but do not have full access to participant data. Research assistants can:

	Add a new user to the system (e.g. enter details for a patient who has just been recruited)

	Add a user to a study (create a membership)

	See a list of observations outstanding

	Enter data for a specific observation

	Add notes to a patient (on the patient dashboard page)

Assessors

Assessors are responsible for collating data from patients, often in interviews, and are typically blind to the condition a participant has been assigned to. Assessors have only limited access to the site, because much of the data stored from participant self reports would reveal which condition a participant was in.

Assessors can:

	Find a given participant

	See that observations which are due for participants

	See observations which are overdue

	Enter data for an observation

Clinicians

Clinicians treating patients may use the system in several ways:

	By adding treatment records and other clinical data

	By taking part in sub-studies in which they record data about other participants (see Membership types).

In theory clinicians may or may not be blind to the allocation of patients (although in the Reframed study they will not be blind).

Clinicians should have no access to research data (i.e. information about observations due/overdue). They will need to:

	Find a particular participant

	Add a TreatmentRecord for a treatment session

	Complete an ad-hoc questionnaire attached to a TreatmentRecord

	Send messages to patients

	Add notes to patients (patient_dashboard)

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Setting up studies

When using Signalbox, it’s helpful to distinguish between a Trial or Research Project (i.e. the work you are doing) and a Study. In Signalbox, studies have a specific meaning, and a complex trial may be split across several studies for convenience and simplicity.

To get a grip on how things are structured, see the SignalBox.

Creating a new study

Start by adding a study.

[image: _images/study_change.png]
The study change view

Complete the necessary details in the Overview and Study Information Fields sections, and upload an image to represent the study.

Studies with multiple conditions

Studies may contain multiple conditions, each of which may use independent schedules to followup particpants. Study conditions can be added at the bottom of the Study change view.

[image: _images/study_conditions.png]
Adding study conditions.

By default, participants will be randomised to study conditions in equal proportions. This can be amended by changing the weight option of the StudyCondition. Weighted randomisation is also possible to minimise group imbalances. These options are available under the Advanced tab on the study change view.

[image: _images/randomisation_options.png]
Advanced randomisation options.

Capturing personal infromation from users on signup

When users register with the site (normally when they consent to take part in a study) Signalbox can request additional profile infromation from them, including:

	::

	landline
mobile
site
address_1
address_2
address_3
county
postcode

By default these fields are optional, and not displayed to users. Each study can specify which of these fields should be (a) displayed and (b) required for paticipants to complete. This is specified by the Visible/required profile fields box on the study change view.

..note:: One current issue with the signup process is that participants are randomised to the study and observations created as soon as the user consents, and these observation can be triggered before they provide necessary profile information (e.g. mobile number). Be aware of this when defining study schedules.

User prompted data collection

In addition to observations defined by a Script, data can be collected ad-hoc, as users choose. Script specified in the Scripts allowed on an ad-hoc basis field can be executed by users from their profile page.

..note:: Script specified as allowed for user-prompted data collected may generate more than one observation, which may not be what is desired.

Using ScoreSheets for conditional or ‘responsive-mode’ data collection

Observations may also be created in a responsive fashion, based on responses users make — for example, if a participants’ questionnaire responses meet some criteria.

When collecting data in responsive mode, the study administrator needs to define the conditions to be met to create and send additional observations.
ObservationCreator, ShowIf and Scoresheet objects are used to do this.

ObservationCreators define a Script to be run when a Reply contains answers which meet a certain criteria. signalbox.models.ScoreSheets are used to define these criteria. A Scoresheet consists of a name and description, a list of Questions for which responses will be included and a function to be applied to answers to these questions.

[image: _images/showif_add.png]
Creating a ShowIf.

For example, a Scoresheet named ‘Beck Depression Inventory Sum Score’ might reference each of the questions in the BDI, and use the sum function. The compute method of the scoresheet will then apply the function to Answers provided within a given Reply (i.e. on a single occasion for a particular user) and return a single numeric value. At present sum, mean, stdev, median, min and max functions are available.

Note

Some of the score functions will return a floating point value (including the median function), which means direct equality comparisons with integers will not work always work as expected; e.g. if the function returns 2.000000000002 for median([1,2,3]), so comparison with the integer 2 will be False.

ShowIf objects define thresholds which scores calculated by ScoreSheets must meet before a Script can be run and new observations created. For example, a ShowIf might specify that a BDI score in a particular reply must be > 15 for the script to be executed.

Note

ShowIf objects are also used for conditional display of Questions and Instruments within Askers.

Researcher Alerts

In some cases it may be necessary to alert researchers if participants make particular responses: for example, answers to questions relating to suicide which indicate participants may be at risk. To facilitate this, it’s possible to attach Alerting rules (signalbox.models.Alerts) to studies.

As with responsive-mode data collection, alerts use ShowIf objects to define conditions under which an alert will be sent. Alerts also store an email address and/or mobile phone number to send email or sms-based messages when triggered.

[image: _images/alerts.png]

Assessors and blinded studies

Some larger RCTs may require blinded assessments to be made, and employ assessors to interview partipants. Although assessors need access to the system to enter (and perhaps double enter) data, it’s important that they don’t encounter information which might compromise the blind. Such a situation would obviously occur if assessors could see the condition to which a participant was added. However less obvious situations might occur, when assessments differ between study conditions. For example, if assessors could:

	See scripts (or information from scripts) which are only relevant to a particular condition

	See observations or replies which include reference to questionnaires or instruments only shown to a particular condition.

To prevent this, assessors have only limited access to the site, and have a specific view designed to let them safely access observations and update client data. This is available at:

/admin/signalbox/observations/outstanding

From here, assessors can filter clients by username (which is likely to be a unique alphanumeric code rather than a name) and list Observations which are due to be made. This view automatically filters out observations which:

	Have a script which is marked breaks_blind

	Have been added on an ad-hoc basis (determined by checking whether the Observation has an attached script).

From this view, assessors can select an observation and enter data for it.

Warning

Blinded Assessors and access to observations-due

Care is needed when creating scripts and questionnaires which blind assessors will access. In particular the following must not include content which could reveal which group a participant is in as the assessor enters data:

	label attribute of :class:`Script`s (this is used when listing observations for assessors)

	The content of questionnaires themselves (clearly no questions should be visible which identify study condition – for example, therapy-relevant information).

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Creating questionnaires

The Ask application deals with creating and displaying questionnaires.

Questionnaires can be spread across multiple pages, and consist of questions. Questions can also be grouped into Instruments, which can be placed in a block into a page. Questions will often refer to ChoiceSets (groups of discreet options), e.g. for likert type responses.

Editing via markdown text format

To enable rapid editing of questionnaires, a text-based format is available in which titles, questions and choice-sets can be specified, and which are converted into Asker, Question and ChoiceSet objects in the database. This text format is based on [markdown](http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html).

The text to edit questionnaires comes in two blocks: the header, which specifies details of the questionnaire as a whole, and the body which contains individual questions and choicesets.

The questionnaire header

The header is formatted as follows:

name: "Name of the questionnaire here"
slug: "examplequestionnaire"
redirect_url: "http://www.example.com"
show_progress: false
step_navigation: true
steps_are_sequential: true
success_message: "Thanks for completing this questionnaire."

The name and slug attributes identify the questionnaire — the slug being a short identifier which can be used in url links. The other fields are as follows:

	redirect_url

	The page the user is sent to when the questionnaire is complete

	success_message

	If the user is redirected to page within the signalbox site, an extra message which will appear in a banner at the head of the page after completion.

	show_progress

	Whether participants can see how far through the questionnaire they are

	step_navigation

	Whether links should be included allowing random access to each page within the questionnaire.

	steps_are_sequential

	If true, and step_navigation is enabled, then participants can only navigate ‘back’ within the questionnaire, and cannot skip forwards.

The questionnaire body

Questions themselves are defined in what are called ‘fenced code blocks’ in Markdown. For example:

~~~{}
This the simplest type of 'question' - an instruction. No responses will be collected here.
~~~


When this is saved, you’ll notice that the system adds some attributes to the block to enable it to be identified in the database later for editing. So, the example above would get transformed into:

~~~{#ecVhsaj7889ij .instruction}
This the simplest type of 'question' - an instruction. No responses will be collected here.
~~~


Here, a variable name has been added (ecVhsaj7889ij) and the type of question specified for clarity. To add other types of questions you will need to manually specify the type, and optionally also the variable name for example:

~~~{#howoldareyou .integer}
How old are you, in years?
~~~


This would create an html question which requires an integer answer to be entered in a small text box. Some questions (including integer questions) have optional attributes. For example:

~~~{#howoldareyou .integer min="12" max="120"}
How old are you, in years?
~~~


In the example above we add a min and max attribute to validate against some typos. The text of questions can itself include markdown formatting to create headings, emphaisis or links within a questionnaire. For example:

~~~{#howoldareyou .integer min="12" max="120"}
# Demographic information

How old are you, ***in years***?
~~~


In the example above, a level-1 heading (Demographic information) is inserted, and the text ‘in years’ is formatted in bold and italic. For more information on [markdown formatting see the guide here](XXX).

Defining a list of choices

Some questions require users to select from a restrcited range of choices, for example a likert-type scale. To specify the choices, specify a choiceset attribute on the question, and define the choiceset in a second, separate block:

~~~{#howhappyareyou .likert}
How happy are you?
>>>
1=Very happy
2=Miserable
~~~


Here the possible options are listed following “>>>” on separate lines, in the form score=label. Scores must be integers, and are the values saved when the user provides an answer.

Default options

To mark one option to be selected by default, insert a star in front of the value:

~~~{#range1to4 .likert}
Question text
>>>
*1=Happy is selected by default
2=2
3=3
4=Unhappy
~~~


Calculating and displaying summary scores from participant responses

For instruction questions, in place of a list of choices, it is possible to specify a score which will be computed from previous participant responses (a ScoreSheet). For example:

~~~{#summaryscoreexample .instruction}
Your total score is: {{totalscore}}
>>>
totalscore <- sum(variablename1 variablename2 variablename3 ...)
~~~


This question will compute the sum of variable1, 2 and 3, and display it where the {{totalscore}} marker is, within the question text. Again markdown formatting can be applied to scores.

Note: because answers must be saved in the database before being available for summary scores, be sure to specify this type of question on a page which comes after the variables to be used.

Remapping of scores

As notes, scoresheets allow you to specify summary scores from combinations of questions which the participant has already made. Sometimes, you might like to score responses in such a way that several of the options equate to the same value. You can achieve this by adding [int] after the score to be stored in the database:

~~~{#remappingexample .likert}
Question text
>>>
*1=Stores 1 in the database, and in scoresheets
2=Stores 2 in the database, and in scoresheets
3[2]=Stores 3 in the database, but scores 2 as part of scoresheets
~~~


Using the Django templating language

Signalbox uses the Django template language to render the text of a question as it is presented to the user. Several variables, including summary scores (see above) are available in the render context, and can be included with the {{varname}} syntax. Other more advanced features can also be used, for example to conditionally display text based on previous answers. For example:

~~~{#djangoteplateexample .instruction}
Your total score was: {{totalscore}}.
{% if totalscore > 10 %}Well done!{% endif %}
>>>
totalscore <- sum(variablename1 variablename2 variablename3)
~~~


This question computes {{totalscore}} and then uses it to conditionally display extra text in the question.

Other variables available as the text is rendered are:

	Saved answers, accessed as: {{answers.variable_name}}.

	The Reply object (e.g. You started this reply at: {{reply.started}}).

	The User object (e.g. Your name is {{user.first_name}}).

A complete example

A complete example can be found in ask/fixtures/asker_text.md.

Other types of questions available

Different questions types can be specified as attributes on the question, similar
to a css class style. Just add a period (.) and the name of the type:

	instruction

	No answer required, but ‘question’ text displayed.

	uninterruptible-instruction

	Like instructions, but when using IVR systems this type prevents the user continuing until the whole message has played.

	short-text

	A small text input box

	long-text

	A large <textarea> box.

	likert or likert-list

	Discreet options selected via radio-buttons (i.e. options are mutually exclusive). likert-list produces a vertical list as opposed to a horizontal scale. Add .rotate to rotate the option labels.

	checkboxes

	As for likert, but options are not mutually exclusive (more than one can be selected).

	integer

	The user can only enter an integer. Optional attributes are min and max.

	decimal

	As for integer, but allows only (and validates) decimal numbers.

	pulldown

	As for likert, but uses a pulldown selector instead of radio buttons.

	required-checkbox

	Displays the question text next to a checkbox which the user must check to progress to the next page.

	slider or range-slider

	A slider element which allows users to pick a value between a min and a max which are specified as additional attributes. E.g.:

~~~{#variablename .slider min=0 max=100 value=50}
Slide the slider to a value between 0 and 100 (this slider will default to 50).
~~~


Or if you want a slider with two movable points to specify a range of values:

~~~{#variablename .range-slider min=0 max=100 values=[10,90]}
Slide the slider to encompass a range of values between 0 and 100 (this slider defaults to the range 10-90).
~~~


Note that for both sliders, a default value will be given and it’s therefore
impossible to specify that a response is required (becase no response cannot
be distinguished from the default response).

	date

	A date picker.

	date-time

	A date-time picker.

	time

	A time-of-day picker.

	hangup

	This question will end an IVR call.

	webcam

	Experimental support for webcams on user laptops. Allows capturing and sending an image to the server (which is saved in the DB rather than a file).

Creating questions

Questions are created by using django form field elements, and extending them with additional information required by signalbox. The types of questions which can be created are documented here: Types of questions (Field classes)

The fields and widgets are as described in the floppyforms documentation: http://django-floppyforms.readthedocs.org/en/latest/widgets-reference.html

In addition, for IVR telephone calls, there are:

	Uninterruptible instruction (this speaks the text of the questions, but without allowing the user to ‘barge-in’and skip the text by pressing a key, as is the case with a normal instruction question.)

	Listen (records audio of the user)

	Hangup (speaks the text of the question and then ends the current call; it is required that the asker ends with a hangup question)

All questions can take an ‘audio’ attribute for use in IVR calls, for example:

~~~{#ivrexample .likert audio="http://www.example.com/audio.mp3"}
This text will be shown on the web, but http://www.example.com/audio.mp3 will be played over the telephone.
>>>
1=1
2=2
...
~~~


Repeating questions within a Questionnaire

Each question must have unique variable name which will be used to identify data collected. If a question is to be repeated within a questionnaire, it should either be duplicated and given a second, different, name.

Approximate completion times for questionnaires

These are calculated by a method on the Asker (Questionnaire) model:

Displaying previous answers or summary scores in questions

Read about ScoreSheets first.

Summary scores or previous questionnaire responses can be included on later pages, using the curly brace markers {{}}:

~~~
This will include an instruction displaying the users user response to a variable named howoldareyou:

{{answers.howoldareyou}}

~~~


Or to show a summary score:

~~~
{{scores.summary_score_name}}
~~~


Be sure to enable a particular summary score for your Questionnaire on the main editing page - it won’t be available unless you do.

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Recruiting participants and study memberships

XXX TODO XXX

Add overview here

XXX TODO XXX

Update content below

A Membership links participants – a User – with Study objects. There are two types of memberships possible within a Signalbox study:

	Regular:	This the normal situation, where a participant is simply taking part in a study.

	Related:	A second kind, where someone is participating in a study not on their own account, but instead to provide data about another participants (e.g. patients, who are the real object of study). An example of this is where a clinician might take part in a sub-study within a trial to complete assessments of patient progress (or, in fact, report on multiple patients).

Adding participants

In clinical trials, participants may be recruited outside of the web system and added by administrators or researchers (rather than signing up directly online). Where this is the case, participants must be added to studies manually.
Participants should be added via the add-participant wizard, available from the Research Tools menu, or at /admin/signalbox/participant/new/.

Once a participant has been added via the wizard, you are redirected to their dashboard page, from where you can add them to a study.

[image: _images/admin_userhome.png]
Where the membership is the related type, it’s necessary to fill out the additional relates_to field on the add membership view. To be in the normal situation:

	The participant is the object of study

	The relates_to field is blank

And in the related type of membership:

	The participant is someone providing data about the individual being studied.

	The relates_to field denotes the individual being studied

Randomisation/allocation methods

When a user signs up for a study (or are added by a researcher), then the system may automatically allocate them to a StudyCondition

At present, allocation is made by weighted, adaptive randomisation.

Weighted adaptive randomisation

Participants are allocated to StudyCondition`s within a :class:-signalbox.models.Study` in the proportions specified by the weight property of each StudyCondition.

For example, if there are 3 Study and have weights 2, 2 and 3, then participants will be allocated accordingly.

In addition, the randomisation_probability field on studies determines how deterministic this allocation is. Where randomisation_probability = 1 then all allocations will be made at random (respecting group weights). However, when randomisation_probability = .5, half of allocations will be made deterministically to minimise the imbalances between groups.

More complex adaptive randomisation schemes are not currently available.

Pausing or deactivating observations for a membership

If a participant decides to leave the study, but is happy for data provided so far to be used, the best method to pause further observations is to deselect the active checkbox on their membership page. This will prevent all further observations being sent for that study.

.warning:: This will not stop all observations for this participant — only those due for this study (i.e. for the membership). If a participant withdraws from a trial which has multiple sub-studies, be sure to deactivate all of their memberships.

Randomisation dates and date-shifting observations

In the case that a person has been randomised to a trial prior to being added to the system, it may be necessary to alter the automatically-generated randomisation_date field on the membership. This can be done through the admin interface: first find the correct membership at /admin/signalbox/membership/ and then edit the property directly.

In other cases a participant may be added to the study and observations added automatically. Sometimes, a participant may need to pause participation in the study, or may not have been added to the study early enough and may need to skip some of the observations a script creates. In these cases, a view is provided to shift the dates of observations which already exist for a membership, to correct the dates forward or backward. This is available at /admin/signalbox/membership/dateshift/(membership_number), or via link on the edit-membership view.

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Collecting data from participants

An signalbox.models.Observation represents an occasion on which a measurement can be taken.

A signalbox.models.Reply collates a set of responses made for an Observation, on a single occasion.

Multiple replies can therefore be made for a single Observations. There may happen when:

	A participant does not complete a questionnaire in one session, but returns to complete the observation by clicking in a link in an email in a second session.

	Where researchers are entering paper data, and wish to enter it twice for validation.

Where multiple replies are made for an observation it is important to distinguish which should be used — i.e. exported for later analysis. In exported data the canonical_reply variable indicates which row should be preferred for analysis.

Note

If no Reply has been marked as canonical, multiple replies can be exported with none of them marked as canonical.

Note

The is_canonical_reply field on the Reply determines whether a reply should be considered canonical. The signalbox.models.Observation.canonical_reply() method returns the canonical reply for a given Observation and is used when exporting data.

Marking replies as canonical

Researchers can identify which reply should be considered canonical, using the view at: /admin/signalbox/resolve/duplicate/replies/(study_id). This can be accessed from the admin page for each study.

Note

It’s probably best to keep on top of duplicate replies as they arise — resolving which was the correct response a long time after the event might be difficult, or impossible.

Entering data on behalf of someone else

Sometimes participants won’t be able to enter data for themselves, and researchers will have to enter it for them.

To enter data for someone else, first find the relevant observation (probably by navigating from the user_dashboard), and then click the Enter data for this observation link:

You will be presented with the questionnaire that the user would have seen.

Once complete, you’ll be redirected back to the Observation edit page.

Notice that a new Reply will be listed for that observation

Note

You may need to set the originally_collected_on field of the Reply if the data was collected from the participant sometime before you are entering it into the system. See image below:

XXX TODO replace and update with additional view

[image: _images/originally_collected_on.png]

SMS message replies

Because of limitations of the SMS system itself, where participants reply to an SMS it’s not possible to reliably reconnect their replies explicitly to a particular observation. For this reason, although SMS replies are stored in the database (using the signalbox.models.TextMessageCallback model), the content of SMS replies is not stored as an Answer.

Currently Signalbox makes an attempt to connect the inbound SMS messages with Observations in the following way:

	When an SMS is sent via twilio, an ObservationData object is stored which records the Twilio SmsSid value.

	When a reply is made within a limited period Twilio appears to return a response containing the original SmsSid value, which is again stored and used to link the two records (see the sms_replies() method of an Observation). However this behaviour is undocumented, and is probably not reliable.

When analysing SMS reply data, it’s probably better to rely on the sender phone number and match these with users’ numbers (e.g. using merge commands in Stata or SPSS).

..warning:: TL;DR: If users reply to SMS messages you will have to do extra work to export this data; it won’t automatically appear in the main datafile.

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Managing data and Exporting Data

Exporting study data

Signalbox is able to export data to delimeted text, or to Stata (a common statistical package). When using Stata, the system also exports syntax which label data appropriately to help with later analysis. This syntax also computes some useful variables to help with later analyses.

Signalbox understands that within a single clinical trial there may be multiple sub-studies (each set up as a Study object within the system). Because studies may be linked, and require joint analysis, Signalbox allows you to export data for multiple studies at once.

If this is this case, you need to define a reference study — this will typically be the study which manages the primary randomisation, e.g. to Treatment/Control. Selecting a reference study is useful, because Signalbox uses the date of randomisation for that study to compute additional variables, including days_in_trial, which can be contrasted with days_in_study and indicates the elapsed days since the user was randomised to the reference study.

Note

Additional computed variables, including days_in_trial` are only computed when the exported syntax file is run using Stata, and are not present in the raw text data, data.txt.

To export data

	Select Tools > Export Data

	Select the studies you wish to export data for

	Select a reference study (optional), and press Submit.

	A zip archive will begin downloading, containing three files: data.txt, make.do and syntax.do.

	Open the zip and, using Stata 11 or later, run make.do.

	This script will generate three additional data files: data.dta, data_values.xlsx, and data_labels.xlsx. If you have StatTransfer installed it will also convert the datafile to SPSS .sav format.

Note

Based on data held by the system about the questions used to collect the data, Signalbox will add meta data to exported files. The data.dta file contains multiple value and variable labels and is probably what you want to use; if needed, the StatTransfer program will convert these to an SPSS file including value and variable labels transparently. The excel file data_values.xlsx includes the labelled values (i.e. strings for numeric variables); data_values.xlsx contains the values themselves.

Long vs. wide format

Signalbox exports data in a long-ish format. Individual Answers are grouped by Reply and saved one-reply-per-row in the txt file.

However, because different replies will have measured different variables, the resulting file will have many columns (one per variable measured in any of the replies) and lots of blank values (where a reply did not measure a variable, it will be blank).

Many analyses will require you to compute summary scores and restructure the file into a wide format (e.g. the reshape command in Stata).

Formats and labels

The export syntax attempts to correctly import python date/time objects as dates, and format them correctly. If this isn’t happening for you then please file a bug report.

See also exporting_data

Serialising data

Before deciding to export questionnaires, try using the markdown editing feature (Creating questionnaires) and see if that gives you enough of what you want.

If it doesn’t, read this first: https://docs.djangoproject.com/en/dev/topics/serialization/.

Then see: http://stackoverflow.com/questions/1499898/django-create-fixtures-without-specifying-a-primary-key.

So, to export use:

app/manage.py dumpdata –indent 2 –natural > data.json

Then use a regex like this to replace all pk’s with null to be sure they don’t clash with others in the db:

“pk”: (?<path>d+),

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Resources for trial administrators

Creating and editing a public facing website

Alongside Signalbox, we use a content management system to create pages which are visible on the ‘front end’ or public facing website.

You can see a list of these pages as /admin/cms/page/. In addition, once you have logged in, you can press the + icon in the top right hand corner of most pages to edit the content on them. The icon looks like this:

[image: _images/edit_button.png]
Clicking it brings up an editing toolbar like this:

[image: _images/editbar.png]
From which you can turn on editing, and also access the admin site. Once you have turned edit mode on, roll over content and click the edit icon shown in the image below:

[image: _images/placeholder1.png]
When adding content to the website, you can use markdown syntax to style content (see markdown for more details).

Secured pages

Additional functionality has been added to the CMS app to enable some pages to be protected from public view. These pages are only accessible by the study team (i.e. researchers, research assistants, assessors, and clinicians).

To make a page on the website protected, use the edit bar to access the page settings:

[image: _images/pagesets.png]
Scroll to the bottom of this page and click the ‘advanced settings link’. Then enable the ‘login required’ checkbox, and save the page.

[image: _images/protectedpage.png]
Protecting a page which has sub-pages (i.e. child pages which appear lower than it in the hierarchy of pages) will make all sub-pages protected.

Warning

If in doubt CHECK! Logout of your account and make sure the page really is protected.

Warning

Although protected from public view, the website is NOT to be used for sensitive content (e.g. correspondence, risk reports etc).

Usage Policies

Password policies

This system can contain confidential and often very private data. Pick a strong password, and store it in a password locker.

See http://xkcd.com/936/.

Auto generate a password here: http://rumkin.com/tools/password/diceware.php.

Password lockers

The preferred solution is Keepass http://keepass.info/download.html.

..note:: If you download the portable version onto a memory stick you can use it anywhere

Use of Markdown formatting

Markdown syntax is used extensively throughout the application to format text for display. Markdown is a simple format which allows headings, lists and links to be created without knowledge of HTML.

For more information on markdown see: MarkdownSyntax [http://daringfireball.net/projects/markdown/syntax].

Examples of elements which use markdown syntax for formatting:

	Study consent information

	Question text

	Website content (within the CMS)

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Signalbox 2 documentation

Reference for database/application structures

Ask application

Models

Types of questions (Field classes)

SignalboxField stores the additional information signalbox needs to properly display and process questions.

Notes on all question types

	Question text: this is displayed in syntax (see ../markdown).

..warning:: Note that some characters are stripped and used to format the question text in html – for example, text surrounded by two * characters will be italicised, and lines starting with a number and a period (e.g. “1. ”) will be turned into a numbered list.

Types of question

Each of the following question classes extends the standard django form fields to allow for different types of questions:

Signalbox application

Models

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Signalbox 2 documentation

Glossary

	user

	definition

	researcher

	a specific role within the system, researchers have broad rights to configure the system, add/remove users, and other manage data

	twilio

	Third party service used to make automated telephone calls. See https://www.twilio.com

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Signalbox 2 documentation

Index

 R
 | T
 | U

R

 	

 	researcher

T

 	

 	twilio

U

 	

 	user

 Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_images/edit_button.png

_static/down-pressed.png

_images/placeholder1.png
Template_1_Content
Primary

Welcome to REFRAMED d

REFRACctory depression - Mechanisms and Efficacy of
Dialectical Behaviour Therapy

The REFRAMED study is a multisite study investigating the effectiveness and
mechanisms of an adaptation of Dialectical Behaviour Therapy (DBT) for treatment;
Yesistant depression. Please go to the Take Part pages to find out more about the
Study.

Recruitment

The study will be recruiiting participants with treatment-resistant depression across
three locations: Dorset, Hampshire, and North Wales. Recruitment in Dorset is on-
going, and recruitment in Hampshire and North Wales will start on the 1st of

_static/down.png

_images/alerts.png
Change Alerting rule

Fields in bold are required.

Study: Test study

*
Email: benwhalley@gmail.com
Mobile: +441752584864
Condition: demo_scale is in [1]

*

Save and add another Save and continue editing

_static/file.png

_images/study_conditions.png
Tag:

Display name:

Scripts:

Test study > main (study condition) |

+ Add another Study Condition

O Delete

main

TREATMENT

Alabel for this condition which can be shown to the Participant (e.g. a non-descriptive name used to identify a condition in an experimental session without
breaking a biind.

3

Relative weights to allocate users to conditions

*
Hold down *Control", or *Command" on a Mac, to select more than one.
Available scripts Chosen scripts
Filter (test-emai) TEST EMAIL
(test-email-survey) TEST EMAIL SURVE'
(generic-add-document) Add a documer (test-phone-call) TEST PHONE CALL
Choose all © O Remove all

_static/up-pressed.png

_images/pagesets.png
—_—
Template v | | B Page v | {¥ Adminv |-
2% Site Administration

Page Seting:

© View History

_images/admin_userhome.png
testuser (testuser)

@ DasuioAR> s0OKMARKS +

Home >

(testuser)
2 Edit user details

Study memberships

Not participating in any studies

4 Add to 2 study

Observations to complete

No observations outstanding for this user

APPLICATIONS ~

Add note

Previous contacts:

Previous messages:

No messages sent yet.

000/admin/signalbox participant/ 153

RESEARCHTOOLS ~ ASSESSORTOOLS ~

Questionnaire responses (screening only)

No responses available to view

Treatments

No treatments scheduled or recorded for this
participant.

importing_postgres_backups.html

 Navigation

 		
 index

 		Signalbox 2 documentation »

 pg_restore –verbose –clean –no-acl –no-owner -h localhost -d sbox latest.dump

 © Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

_images/protectedpage.png
‘Advanced Settings (

An unique identifer that is used with the page_rl templatetag for linking to this page

Overwrite URL:

Keep thi ield empty i standard path should be used.
@ Login required

Menu visibiliy: [=-eoeee R

imit when this page is visible in the menu

Applicatior

Hook application to this page.

_static/ajax-loader.gif

_images/editbar.png
django @ Editmode OFF Template v | | B Page v | | £% Adminv | | s Logout

search.html

 Navigation

 		
 index

 		Signalbox 2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Ben Whalley.
 Created using Sphinx 1.2.2.

_images/randomisation_options.png
Advanced

Allocation method: Adaptive (weighted) randomisation to balance conditions

See the documentation for more details. Adaptive randomisations require a adaptive_randomisation_probabilty (see below).

@ Auto randomise
@ Auto add observations
Randomisation 05
probabiliy:
Indicates the probabilty that the adaptive algorithm will choose weighted randomisation rather than aliocation to the group which minimises the imbalance.
For example, if set to .8, then deterministic allocation to the smallest group will only happen 20% of the time.

_images/originally_collected_on.png
Asker

EditReply SCIDILscreening_questionnaire

Complete Originally collected on

Today | ()

Observation Datas

Observation Data: attempt

Key: Auempt

12
3456789
101112 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Yesterday | Today | Tomorrow
Cancel

O Delete

_images/showif_add.png
06 Django administration | Django site admin 5
' o) (]| B @ 127.0.0.1:8000/admin/ask/showif/add/7_popup=1 3 (o]

Add show if

Fields in bold are required.

+*
A summary score to be calculated based on answer already entered in the current Reply.

CASE INSENSITIVE values to match, comma separated. The question is shown if any value matches

Previous question response or summary score must be less than this value.

Previous question response or summary score must be more than this value.

_images/study_change.png
06 Django administration | Django site admin

(<>] () (2][2][R][6 127.0.0.1:3000/2 y) - - - - -

Home Studies = Test study
Change study
Main Study information

Fields in bold are required.

Sav and s anavr | Save andcantns oting

Test study

Slug: test-study

Ashort name used to refer to the study in URLS and other places.

Study email: benwhalley@gmail.com
The return email adaress for all mailings/alerts.
@ Visible

O Paused
O Show study condition to user

_static/minus.png

